DetailedSolution. Given if I n = βˆ«Ο€ βˆ’Ο€ sinnx (1+Ο€x)sinx dx,(1) i f I n = ∫ βˆ’ Ο€ Ο€ s i n n x ( 1 + Ο€ x) s i n x d x, ( 1) I n = βˆ«Ο€ βˆ’Ο€ Ο€xsinnx (1+Ο€x)sinx dx.(2) I n = ∫ βˆ’ Ο€ Ο€ Ο€ x s i n n x ( 1 + Ο€ x) s i n x d x. ( 2) On adding Eqs. (i) and (ii), we have. >>Class 11>>Maths>>Trigonometric Functions>>Trigonometric Functions of Sum and Difference of Two angles>>Prove sinn + 1x sinn + 2 x + cos n Open in AppUpdated on 2022-09-05SolutionVerified by TopprTo prove- Proof Hence any question of Trigonometric Functions with-Was this answer helpful? 00More From ChapterLearn with Videos Practice more questions

a) Prove the reduction formulaintegrate cos^n(x)dx = 1/n * cos^(n-1) * x sin x + (n-1)/n * integral cos^(n-2)x dx

Question MediumOpen in AppSolutionVerified by TopprThe given equation is ...... i Let Therefore, from i, we get Since, both these values satisfy the given equation. Hence, the solutions of the given equation are .Video ExplanationWas this answer helpful? 00
AF3LN.
  • l9gud5yvpl.pages.dev/149
  • l9gud5yvpl.pages.dev/211
  • l9gud5yvpl.pages.dev/80
  • l9gud5yvpl.pages.dev/209
  • l9gud5yvpl.pages.dev/568
  • l9gud5yvpl.pages.dev/439
  • l9gud5yvpl.pages.dev/19
  • l9gud5yvpl.pages.dev/496
  • sin n 1 x sin n 1 x